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the drag coefficient rises above that of the sharp-tipped
cone.
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Approximate Analysis of Effect on Drag of Truncating the
Conical Nose of a Body of Revolution in Supersonic Flow

This report presents a rapid method for estimating the nose
pressure-drag coefficient in supersonic flow of a body formed
by replacing all, or part of, its conical nose by a flat face.

0

It is noted that, if0 the nose length is not decreased, a sharp
nose can be replaced by a flat nose of appreciable area with-
out increasing the drag above that for the sharp nose.

This work was sponsored by the Re-Entry Body Section of the
Special Projectm Office, Bureau of Naval Weapons under the
Applied Research Program in Aeroballistics, Task No. NOL-363.
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SYMBOLS

A defined in equation (30)

B defined in equation (31) D
CD nose drag coefficient

ACDn,m drag coefficient of body (n) minus drag coefficient

of body (a)

]U nose pressure drag

AU2,1 pressure drag of body (2) minus pressure drag of
body (1)

length of portion of body (1) that Is to be replaced,
measured along surface from most forward point (see
fig. l(b))

_f2 length of portion of body (2) that Is different from
body (1),, measured from most forward point (see fig.
I(b))

7 quantity, -7 _" [{2 J/'S. d4

N radius of flat face

I non-dimensional pressure Integral over flat face,

r distance from most forward to most rearward point of
axis of symmetry, measured along surface (oee fig.
1(a))

M Mach number

0 * length of nose measured along axis of body

p static pressure

ANnon-dimensional pressure coefficient(I;2a

2 ..
LV o
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SYMBOLS

dynamic pressure (P2)0

T radius of cross-section of body, perpendicular to

axis of symmetry (see fig. I(a))

I radius of reference cross-section of body

T velocity of flight
e

distance along surface of body rrom most forward
point on axis of symmetry (see fig. l(a))

I ratio of specific heats

Stangent of cone half angle 0

angle between tangent to body surface and axis of

symmetry (see fig. I(a))

density

Subscripts 0

o at stagnation point behind a normal shock

e • local value on body

co in free stream ahead of bow shock 0

C value on cone

(n). or n pertaining to body number n C

N for fixed nose length

0 for fixed cone angle

S with sharp 1p

-- quantities with a bar are dimensional, unbarred

0 q~ant0ties are pon-dimensional

a11. non-dfmepasonal ¶engths are based on the reference
lengtJV "

B vaWe fo# %1ic% CD of ,lat-face qone equals CD of
shao eone

v

*t C
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0
SUMMARY

A rapid method for estimation of the nose pressure-drag
coefficient in supersonic flow of a body formed by replacing
all, or part of, its conical nose by a flat face is given.
The analysis, although roughagrees with the experimental
observation that the drag coefficient of a truncated cone of
fixed length decreases as the radius of the flat face increases
from zero. After reaching a minimum, the drag coefficient
rises above that of the sharp-tipped cone. For example, at
a Marh number of 2.4, the calculated nose drag coefficient of
a truneabed %one, obtained from a sharp-tipped cone of 380
included angle by decreasing the cone angle without changing
the nose lewg~ih, decreases to about 93 percent of that of the
shagp @one as the flat-fate radius increases to 15 percent of
the base ragJup. the drag coefficient of the blunt cone
remains f.ess t4ian tba# for the sharp cone up to a ratio of
6lat faLe eo base radjus of about 28 percent.

* A a Mae number of 2.4, the calculated nose drag coef-
fici~at of a 13atoefaqed gone, obtained from a sharp cone of
OS 0 inluded' angle by decreasing the cone angle, is as much
as 19 percent less than the nose drag of the cone of equal
flat-fae area obtained by keeping the cone angle fixed at 380

* and reducing t1e nose length.

The indication from the analysis is that the allowable
bldnting for no iqcrease in drag over the sharp cone decreases
slowl7 Wtth increase in Mach number and more rapidly with
deerease In sharp oone angle. 0

The method for the estimation of the change in drag coef-
ficient caesed by keeping the cone angle fixed and cutting off
1art o 4he nose to form a flat face is tested by comparison
with experimental results in two cases. In the first, the
method prediats the drag %oefficient of a flat-faced cylinder
from that of a sharp-nose cone with a maximum error of about
A Pordent. In the second, the method predicts the drag coef-
ficlext OZ a tlat-faoed cone-cylinder from that for a sharp-
nose cone-crlinder with a maximum error of about 16 percent.
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INTRODUCTION

It is sometimes necessary to estimate the change in drag
coefficient caused by cutting off the forward portion of a
flat-faced body in supersonic flow. In the present investi-
gation, the portion of the body that is cut off to form a new
and larger flat face is the frustrum of a cone. Because the
method of analysis of the change in drag is rough, a search
of the literature was made in order to obtain experimental
data for a test of the method of analysis. References (1) and
(2) were found to contain data that were useful for testing
the method of analysis. A statement in reference (2), that an
extrapolation of the experimental results predicted that the
drag of a flat-faced cone of fixed nose length would be less
than that for the sharp cone, was noted.

The search of the literature also disclosed that some
time ago reference (3) had reached the result that cones tipped
by spheres could have less drag than sharp cones. Reference
(3) gives experimental and theoretical curves of drag coef-
ficient that demonstrate this effect. Although a short
description of the method by which the drag coefficient was
calculated is given, no equations are given. Moreover, it is

0 not clear whether or not the result that the drag decreases
as the sharp tip is blunted was obtained from an examination of
the results of calculations or from an exanfination of equations.
In the present investigation, equations are given, and it is
apparent from them that the drag coefficient of a cone initially
decreases when the tip is blunted and the nose length is kept
fixed. Moreover, the present rough analysis indicates that
the flat face can be made fairly large in diameter before the
drag of the blunt cone exceeds that of the sharp cone.

0 The present investigatimn treats only a special case of
the supersonic drag problem. It does not attempt to discuss the
problem of minimum drag bodies, a subject that has already
been fully treated by many investigators by more exact methods
of analysis.

ANALYSIS

Change in Nose Pressure-Drag When Part of Conical Tip is Cut
Off to Form Flat Face

0The drag is assumed to consist of pressure drag only; the
friction drag is neglected. The pressure drag is

"=JL• :f}s.i• a1 R (1) (see fig. l(a))

2
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For the body denoted by (1) in figure 1(b), the drag Is

~i~ fs~e Ti;~ f~ L r~ . tieA~~ (2)

' 

0

For the body denoted by (2), the drag is

Because the forward portion of bodf (1) is cut off to form

body (2), the interval length(t. -f) is equal to the length

[7 _• and 7 and e are the same functions of (7-?) as of
(L/-•. ~It is also assumed that Pc Is the snm function of

%- a of (9-?,j , that is, that the static pressure on the

remaining portion of the body is unchanged by removing its
forward portion. Consequently,

*~ ~ 4 ft-sn -Wd 4

Therefore, 0-

- - =Ma -zif (5)

Q

or

A -Dz I~

A- -VA. (6)
(1*7*J R~~

but

Sev
then

- Af (5--B)rdx A f(3;-,)r X7 (7)

3
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Equation (7) applies for any body of revolution that is
modified by changing its forward portion in an arbitrary
manner, provided that the assumption that pe is the same
function of (7-) as of(31-k) is valid. Actually, however,
pe for i>f 2 is different from pe for i>*I. The difference
is largest at x - T2 and decays downstream.

When the modified body, body (2), has a flat face, the
conditions sinO - 1, ? - 7 apply for OS3i 12, the flat face
region. When the body (1) is conical over the "cut-off"
portion, the conditions sine - const., 7 - 3sinO apply for
OSR11. In this case, equation (7) becomes

- -- 1MI- (8)

It is more convenient to non-dimensionalize the length x in
the first integral of equation (8) by the radius of the flat
face W, than by the reference radius I. Thus,

Pe *thn f ,ý --7

/ 

_

or

f- T HS. 14a.(9)

0 ~0

Because the body is conical for x less than fl, is

constant and equal to the value for a cone. Consequently,

but ftxx0$)L
theref ore, 

-1

31 xjx(10)

When the relations (9) and (10) are used, equation (8)
becomes

4
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To find the change in drag between two different "cut-
offs" for the sae body when the section removed is conical,
use is made of equation (11). Both "cut-off" bodies, referred
to as bodies (3) and (4), have flat faces. The change in
drag is

4,3 4 3'
or

A2ED A D (12)

where AD411 and 'I$sj are the differences between the drag of
bodies (4) and (3) respectively and the body with a conical tip.
Equation (12) can be written as

-D = A 7D - A7D

or

43D = A (13)

The reference radius It remains fixed although the nose shape
Is changed. f i-

By assuming that the integral I,- W is
the sum over the flat faces of bodies (3) and (4) and by
combining equation (13) with equation (11), in which the
subscript "2" Is replaced first by "4" and then by "3", the
result is obtained that

z IT
where

The quantity

1z I

* depends on the Mach number and on the angle of the conical
nose. Call this quantity F; equation (14) then becomes

5
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,413~ (15)

and equation (11) becomes
& CD ,= kzFR~ =~-~F(16)

EXAMPLE: A numerical value of the integral .. oF f •_ in
the function F is obtained by using the distribution of
over the flat face of a cylinder at a Mach number near 2 Ie-
sented in figure 7 of reference (4). The integral then has the
value .453. The pressure distribution of reference (4), and
thus the value .453 for the integral, is assumed to be inde-
pendent of Mach number. The cone pressure ratio (• is
calculated from the identity C.

c r a - (17)

where the quantities and are read from the

charts and tables of re erence (5). The quantity F is shown
in figure 2 for the Mach number range between 3 and 1.19 for
a body whose nose is a cone of 380 included angle. The lowest
Mach number, namely, 1.19, is that at which the bow shock
detaches from the conical nose. According to figure 2, F is
equal to 1.250 at a Mach number of 2.4. Then, if H4 is equal
to .3 and H3 is equal to .2, the value of ACD4 , 3 is .0625.

Change in Nose Pressure-Drag When Sharp Tip is Replaced by Flat
Face but nose Length is Fixed

In reference (2) it is noted that an extrapolation of the
experimental data predicts that the drag of a cone can be
decreased by substituting a blunt tip for the sharp tip while
keeping the nose length fixed. This effect is also noted in
reference (3), and a calculated variation of drag coefficient
with the ratio of nose radius to maximum radius is given for a
cone capped by a spherical tip. No equations for making the
calculations are given, however, but It Is stated that the
pressure on the conical portion of the blunt cone was assumed
to be equal to that of a sharp cone of the same angle. The
pressure on the hemispherical nose was obtained from experiment.

As a matter of Interest, an investigation was made to
ascertain whether or not the present procedure would predict
a decrease in cone drag if the sharp tip is replaced by a flat

6 
t
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portion without a change in nose length. The pressure drag of
a flat-faced cone is found by adding the nose drag coefficient
of the sharp cone

2.

to ACD 2 , 1 given by equation (11). The result in
4 P

C + (19)

When the cone tip is replaced by a flat face without changing
the cone angle, the ratio is called and the drag

coefficient is called CD . When the nose length is unchanged,
the cone angle is decreaged by substitution of a flat face for
the sharp tip. In this case, the ratio (•) is called _N.)

and the drag coefficient is denoted by CDN.

Equation (19) was used to calculate CD and CDN at a
Mach number of 2.4 for a body that was originally a sharp-
tipped cone of 380 included angle. The results are shown in
figure 3. Also shown is the ratio C-. At a valueC

of H of about .34, this ratio has its m"2mum value, namely
about .19. Consequently, at a Mach number of 2.4, the nose
drag of the frustrum of a cone of 380 included angle and nose
radius equal to .34 of the base radius is 19 percent larger
than the nose drag of the frustrum of the cone with the same
ratio of nose to base radius, but with the same nose length
as the original sharp-tipped cone. The longer cone has an
included angle of about 260 instead of 380.

The value of H at which CD is a minimum is obtained by
differentiating equation (19) with respect to H and setting
the derivative equal to zero. The derivative of CD with
respect to H is:

'Y P'L T (20)

or with

7
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and with

it follows that

NzACV 14)2 SH (21)

It is noted that because is positive, it follows that

Co< 0 for H - 0. That is, the nose-pressure drag coef-

ficient of a cone always decreases with initial blunting.
For a minimum CD, it follows from setting jCp equal to zero
and from equation (21) that A L

") L4 A (22)

A calculation for

U - 2.4
I - .453

and N 1 - 2.904

predicts a minimum value of CD at H - .15. The value of CD is
calculated to be .492.

In order to find the non-zero value of H, called HB, at
which the drag coefficient of the flat-faced cone is equal to
the drag of a sharp cone of equal nose length, the drag coef-
ficient given by equation (18) is equated to that given by
equation (19). The result, after use of equation (17)1 is

H Ail-~) (23)- 2 he -,] ,1

where the first and second terms in the numerator refer to the
sharp and blunt co0e, respectively. The non-dimensional pres-
sure difference (Y)i for the blunt cone depends on 6 and,
therefore, on H. equation (23) can be solved graphically or by
some other convenient method. In the present example, a cone
of half angle 190, at M - 2.4., the value of HB is about

8
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.285. That Is the drag of the flat-faced cons Is less than
that of the sharp cone for H loss than .285. For a cons of
100 half angle, the value of H% drops to about .103. In
figure 4 is shown the variation of HB with sharp-cone angle
at Mach numbers of 2.4 and 4.

The values of HB for 8 equal to 100 and to 190 were cal-
culated by use of equation 723) together with Chart 6 and
Table II of reference (5) for and respectively.

The circles and squares in figure 4 are calculated values; the
curves were drawn through these points. For sharp-cons angles
of 50 and less, a sufficiently accurate value of H1 could not
be obtained by use of Chart 6 of reference (5) because it was
impossible to read the chart to enough significant figures.
The values of !_k for 8s - 50 for M - 2.4 and 4, therefore,

were calculated by use of equation (7-36) of reference (6).
The equation Is

22--1E 2. 4 a _

+ (24)

10 6~/rn l 1L4 z ML..IJ
According to reference (6), the value of • given by equation

(24) for a cone of 50 half angle cannot be distinguished from
the exact values in figure E7d of reference 6; this figure
compares exact values of _ with values calculated by

approximate methods. The accuracy of equation (24) increases
as the cone angle decreases below 50.

For angles less than 50, the value of HB was calculated
directly from an explicit expression for H13. This expression
was obtained by using = _

for the sharp cone, and -

for the flat-faced cone. The result forf CI is, from
equation .(24),

2. _ _

J_ 9

0
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and fortha) i,

/C..

N1  ( F- f (26)

In order to get an explicit expression for Har, expression (26)
is restricted to small values of H. For smail values of H,
the approximation that

InI =Z Iw + +(27)

and that

2- 14 (28)

is made. When expressions (25) and (26) are used in equation
(23) together with thq approximations (27) and (28),and all
terms multiplied by Vt or higher powers of H are neglected,
the result, after collecting terms, is

S-. -cA- (29)

10

where

(r~:iM -

and

3 )$f:UI r1_ (31)

fM1p41 -1 4 M M2_

The curves of figure 4 for N 2.4 and 4 for 99< 50 were cal-
culated by use of equation (29). For 6. - 510, the value of HB
calculated by use of equation (29) differs from the value of
H obtained by use of equations (23), (25) and (26) by loes
tRan 3 percent. Calculations indicate that expression (29)

10



NOLTR 62-111

rapidly becomes inaccurate for Og greater than about 7 1/20.

For half cone angles less than 20 or so, the value of N
becomes large enough for equation (29) to be approximated with
an error of no more than about 5 percent by,

The indication from equation (32) is that for small cone angles,
%B increases somewhat more slowly than So .

Because % decreases with increase in K, (see fig. 4),
It was of interest to determine how much further HB would
decrease from the values for M - 4 as M increased. A calcu-
lation of the variation of HB with e0 was, therefore, made
for M - co. To calculate the value of HB at Os - 100 and at
190, the Chart 6 of reference (5) was used to get A-) for
M - co. The value of the term A*" o

for M - co was calculated by keeping I equal to .453 and let-
ting M become very large in the expression for T , namely,

(ref. (5))

The result is

z 41

or for 1.4, I .453

The results for 6s - 10 0°and 190 are shown as the triangles
in figure 4 on the curve marked "M - * ." For small values
of es, the results obtained by ume of the Chart 6 of refer-
ence (5)*are too inaccurate to.have any .meaning because it
becomes impossible to read. from the chart to enough

• 11
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significant figures. Consequently, the empirical expression

IýA~ ) .016 aa( 493in 40ir4d) (33)

which fits the valuese of Y obtained from reference (7) for

M - co with an error of less than one percent for 88__100, Is
used. From equation (33) and the assumption that & on a

blunt cone is equal to that on a sharp cone with the eame
angle, it follows that

-- (34)

Moreover,
e_

The portion of the curve for N - co in figure 4 for Os4 100
was calculated by use of equation (23) together with equations
(34) and (35). In this calculation all powers of H greater
than the second were neglected in the development of an
expression for HB. When equation (33) Is used for
the result for M - ao and @.<10° Is that

HS=.76 18 ix e3 (e n ; (36)

The portion of the curve for M - co for 6e< 100 in figure 4
was calculated by use of equation (34).

The indication from figure 4 is that H% Increases as the
angle of the sharp-cone increases, and decreases as the Mach
number increases. For a perfect gas, however, H% does not
decreae much below its values at M -- 4.

Comparison with Experiment

Note that the present method estimates the change in
pressure drag but not the change in friction or base drag
caused by the change in nose shapo. Consequently, exact
agreement with experiment is not to be expected. With this
remark in view, two sets of data are examined. The first set
is contained In figure 16 of Section 16-14 of reference (1)
in which in shown the dependence of the drag coefficient of a
cone-cylinder on the cone angle at a Mach nuhber of 2. The
blunt cylinder is included. The present method, equation (11),

12
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is used to predict the drag of the blunt cylinder from the
given drag of the sharp nosed cone-cylinder. The results are
shown in Table I. The maximum error Is about 5 percent of the
drag coefficient of the blunt cylinder. The same method can
be used to predict the drag coefficient of a sharp nosed cone-
cylinder from the known drag of a blunt cylinder. In this
case, however, the percent error in the drag coefficient of
the sharp cone-cylinder is much larger because the drag coef-
ficient of a cone-cylinder is less than that of a blunt
cylinder.

The second set of data is that of reference (2). In
these experiments the nose of a cone of 240 12' included
angle was cut off at four distances from the tip. The value
of ACD calculated by the present method, that is, by equation
(11), the value of CD obtained by adding ACD to CD for the
sharp cone, and the measured value of CD are shown In Table II.
Although the values of ACD are Inaccurate, the calculated
values of CD differ by no more than 16 percent from the
measured values.

No experimental data seem to be available to test the
predictions of the present method for the case in which a
sharp cone is blunted without changing its nose length. Both
the drag reduction caused by blunting a cone of fixed nose
length and the value of Hare obtained by using the calculated
drag of a blunted cone. This drag is computed by using equation
(11) to compute ACD caused by blunting a sharp cone of the
same angle as the blunt cone and then adding this value of
ACD to the value of CD for the sharp cone. The equation used
to compute ACD, namely, equation (11), was also used to com-
pute the values of L&CD listed In Table II. Because these
values of ACD are too large in all the cases listed, the
present method overestimates the drag of blunt cones. There-
fore, both the drag reduction caused by blunting a sharp cone
of fixed nose length and the value of H% would actually be
larger than predicted. This inference is strengthed by the
statement in reference (3) that at a Mach number of 6, the
measured drag reduction caused by blunting a sharp cone by a
hemisphere was greater than predicted. Both the method of
reference (3) and the present method assume that the pressure
on the side of the blunted cone Is equal to that on a sharp
cone of equal angle. Because the result of reference (3) is
for a Mach number of 6, it appears that the inference that the
present method overestimates ACD is probably not limited to
the Mach number range of the data in Table 11. The cone
angle of reference (3), namely, about 190, is also somewhat
different than for the data of Table II. The difference
between theory and experiment Is probably caused by the omis-
sion of skin friction and by the departure of the pressure
from the sharp-cone pressure on the blunt cone behind the face-
junction. 13
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CONCLUDING REMARKS

A rapid method for estimation of the nose pressure drag
coefficient in supersonic flow of a body formed by replacing
all, or part, of its conical nose by a flat face is given.

The analysis agrees with the experimental observation
that the drag coefficient of a flat-faced conical nose of
fixed length decreases as the radius of the flat face increases
from zero. Beyond a certain flat-face radius that depends on
cone angle and Mach number, the drag rises above that of the
sharp cone. The drag of a conical-nosed body, therefore, can
be decreased and its volume increased by substituting a flat
nose of the correct size.

The indication from the analysis is that the allowable
blunting for no increase in drag over the sharp cone
decreases slowly with increase in Mach number and more
rapidly with decrease in sharp cone angle.

14



0 NOLTR 62-111

REFERENCES

(1) Hoerner, Sighard F., "Fluid-Dynamic Drag," Published by
author, 1958

(2) Charters, A. C. and Stein, H., "The Drag of Projectiles
with Truncated Cone Headshapes," Ballistic Research
Laboratories Report No. 624, Mar 1952

(3) Selff, Alvin and Sandahl, Carl A., "The Effect of Nose
Shape on the Drag of Bodies of Revolution at Zero Angle
of Attack," NACA Conference on Aerodynamic Design
Problems of Supersonic Guided Missiles, Ames Aero. Lab.,
Oct 2-3, 1951

(4) Stoney, William E., Jr. and Markley, Thomas J., "Heat
Transfer and Pressure Measurements on Flat-Faced Cylinders
at a Mach Number of 2," NACA TN 4300, 1958

(5) Ames Research Staff, "Equations, Tables, and Charts for
Compressible Flow," NACA TR 1135, 1953

(6) General Theory of High Speed Aerodynamics. W. R. Sears,
ed., Vol. VI, High Speed Aerodynamics and Jet Propulsion,
Princeton University Press, Princeton University, 1954

(7) Kopal, Z., "Tables of Supersonic Flow Around Cones,"
Mass. Inst. of Tech. Report No. 1, 1947

15



NOLTR 62-111

Table I

PREDICTED DRAG COEFFICIENT OF BLUNT CYLINDER AND PERCENT ERROR
(MOD - 2 )

Cone Angle ACD Predicted Qj Percent Error in 9D

11.3 1.34 1.62 5
14.1 1.29 1.66 2
18.4 1.19 1.64 4
26.6 .946 1.64 4
31.0 .787 1.62 5

Measured Drag Coefficient of Blunt Cylinder - 1.70.
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Table II

PREDICTED ACD AND CD, MEASURED CD, AND PERCENT ERROR IN CD
FOR A CONE OF 240 12' INCLUDED ANGLE

M - 1.65
Percent

H ACD CD Calc. CD Meas. Error

o .4061 -
.165 .0334 .4395 .4233 4
.322 .1266 .5327 .4808 11
.483 .2862 .6923 .6000 16
.642 .5055 .9116 .7830 16

M - 2.1
Percent

H ACD CD Calc. CD Meas. Error

0 .3478
.165 .0367 .3845 .3652 5
.322 .1398 .4876 .4352 12
.433 .3146 .6624 .5962 11
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.165 .0385 .3495 .3158 11
.322 .1468 .4577 .4140 11
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